openGauss使用BenchmarkSQL进行性能测试

举报
Gauss松鼠会小助手2 发表于 2024/04/29 14:27:50 2024/04/29
【摘要】 本文提供openGauss使用BenchmarkSQL进行性能测试的方法和测试数据报告。 BenchmarkSQL,一个JDBC基准测试工具,内嵌了TPC-C测试脚本,支持很多数据库,如PostgreSQL、Oracle和Mysql等。

前言

本文提供openGauss使用BenchmarkSQL进行性能测试的方法和测试数据报告。

BenchmarkSQL,一个JDBC基准测试工具,内嵌了TPC-C测试脚本,支持很多数据库,如PostgreSQL、Oracle和Mysql等。


TPC-C是专门针对联机交易处理系统(OLTP系统)的规范,一般情况下我们也把这类系统称为业务处理系统。几乎所有在OLTP市场提供软硬平台的国外主流厂商都发布了相应的TPC-C测试结果,随着计算机技术的不断发展,这些测试结果也在不断刷新。

二、TPC-C 标准测试概述

1.模拟 5 种事务处理

1新订单(New-Order)事务内容:对于任意一个客户端,从固定的仓库随机选取 5-15 件商品,创建新订单.其中 1%的订单要由假想的用户操作失败而回滚。(主要特点:中量级、读写频繁、要求响应快)

2支付操作(Payment)事务内容:对于任意一个客户端,从固定的仓库随机选取一个辖区及其内用户,采用随机的金额支付一笔订单,并作相应历史纪录。(主要特点:轻量级,读写频繁,要求响应快)

3订单状态查询(Order-Status)事务内容:对于任意一个客户端,从固定的仓库随机选取一个辖区及其内用户,读取其最后一条订单,显示订单内每件商品的状态。(主要特点:中量级,只读频率低,要求响应快)

4发货(Delivery): 事务内容:对于任意一个客户端,随机选取一个发货包,更新被处理订单的用户余额,并把该订单从新订单中删除。(主要特点:1-10 个批量,读写频率低,较宽松的响应时间)

5库存状态查询(Stock-Level):事务内容:对于任意一个客户端,从固定的仓库和辖区随机选取最后 20 条订单,查看订单中所有的货物的库存,计算并显示所有库存低于随机生成域值的商品数量。(主要特点:重量级,只读频率低,较宽松的响应时间)

每个Warehouse数据量约为:76823.04KB

2.TPC-C 测试指标

TPC-C测试的结果主要有两个指标,即流量指标(Throughput,简称tpmC)和性价比(Price/Performance,简称Price/tpmC)


1)流量指标(Throughput,简称tpmC): 按照TPC组织的定义,流量指标描述了系统在执行支付操作、订单状态查询、发货和库存状态查询这4种交易的同时,每分钟可以处理多少个新订单交易。所有交易的响应时间必须满 足TPC-C测试规范的要求,且各种交易数量所占的比例也应该满足TPC-C测试规范的要求。在这种情况下,流量指标值越大说明系统的联机事务处理能力越高。

2)性价比(Price/Performance,简称Price/tpmc): 即测试系统的整体价格与流量指标的比值,在获得相同的tpmC值的情况下,价格越低越好。


做TPC-C测试的目的主要有两点

1)贴近生产环境进行实际操作(TPC-C可以提供类似这样的环境)。

2)通过TPC-C测试结果可以清晰的了解数据库的性能等信息。

环境介绍

1.服务器信息

主机IP

配置

操作系统

描述

192.168.52.3

1c/4GB/30GB

CentOS Linux release 7.6.1810 (Core)

DB服务器

192.168.52.4

1c/2GB/20GB

CentOS Linux release 7.9.2009 (Core)

BenchmarkSQL服务器


2.软件信息

软件名称

版本

描述

openGauss

3.1.1

关系型(开源)数据库

BenchmarkSQL

5.0

一个JDBC基准测试工具,内嵌了TPC-C测试脚本,支持很多数据库,如PostgreSQL、Oracle和Mysql等。

TPC-C是专门针对联机交易处理系统(OLTP系统)的规范,一般情况下我们也把这类系统称为业务处理系统。

几乎所有在OLTP市场提供软硬平台的国外主流厂商都发布了相应的TPC-C测试结果,

随着计算机技术的不断发展,这些测试结果也在不断刷新。

JDK

java-1.8.0-openjdk

Java开发工具包,它包含了Java开发所需的所有核心组件和工具。JDK是构建Java应用程序、Java平台和Java Web服务的基础。

R语言

3.6.3

R语言(generateReport.sh脚本需要) ,支持png报告图片生成

htop

3.3.0

htop 是一个交互式的进程监控工具,主要用于查看和管理运行中的进程。

它以用户友好的方式显示进程列表,包括进程的 CPU、内存和交换空间使用情况,以及进程树结构。

htop 允许你通过键盘快捷键来进行排序、搜索、终止进程等操作。

htop 提供了颜色和动态更新的界面,更直观地显示资源使用情况。

htop 适合实时查看和管理运行中的进程,特别是在终端环境中。

ant

Apache Ant(TM) version 1.9.4

一个用于自动化构建过程的工具。它主要用于Java应用程序,但也可以用于其他类型的项目。Ant使用XML文件(通常称为build.xml)来描述构建过程,包括编译源代码、运行测试、打包应用程序等任务。

python

2.7.5

数据库服务器,BenchmarkSQL对应的python版本不能过高,否则存在兼容性报错


配置BenchmarkSQL主机

1. 根据官方文档,安装必要的软件包

配置YUM源

(若仅使用华为云内网的YUM源(http://mirrors.myhuaweicloud.com/repo/CentOS-Base-7.repo),会造成软件版本依赖问题)

## 配置华为YUM源

mkdir -p /etc/yum.repos.d/repo_bak/

mv /etc/yum.repos.d/*.repo /etc/yum.repos.d/repo_bak/

wget -O /etc/yum.repos.d/CentOS-Base.repo https://repo.huaweicloud.cn/repository/conf/CentOS-7-reg.repo


## 配置Epel源

yum remove -y epel-release

yum install -y https://repo.huaweicloud.cn/epel/epel-release-latest-7.noarch.rpm

cd /etc/yum.repos.d/

rm -rf epel-testing.repo


sed -i "s/#baseurl/baseurl/g" /etc/yum.repos.d/epel.repo

sed -i "s/mirrorlist/#mirrorlist/g" /etc/yum.repos.d/epel.repo

sed -i "s@http://download.fedoraproject.org/pub@https://repo.huaweicloud.cn@g" /etc/yum.repos.d/epel.repo


## 顺刷新缓存

yum clean all

yum makecache

yum repolist all


安装依赖软件包

yum install gcc glibc-headers gcc-c++ gcc-gfortran readline-devel libXt-devel pcre-devel libcurl libcurl-devel -y

yum install ncurses ncurses-devel autoconf automake zlib zlib-devel bzip2 bzip2-devel xz-devel -y

yum install java-1.8.0-openjdk ant -y


安装R语言(generateReport.sh脚本需要)

yum install pango-devel pango libpng-devel cairo cairo-devel ## 使R语言支持png图片,否则报告生成有问题

wget https://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.6.3.tar.gz

tar -zxf R-3.6.3.tar.gz

cd R-3.6.3

./configure && make && make install


## 如果需要重新安装,请参考以下步骤 ##

make uninstall

./configure

make

make install


编译安装htop(服务器端和客户端都安装)

xz –d htop-3.3.0.tar.xz

tar xvf htop-3.3.0.tar

cd htop-3.0.5

./autogen.sh && ./configure && make && make install


检查安装情况(java/ant/htop)

[root@localhost ~]# ant -version

Apache Ant(TM) version 1.9.4 compiled on November 5 2018


[root@localhost ~]# java -version

openjdk version "1.8.0_402"

OpenJDK Runtime Environment (build 1.8.0_402-b06)

OpenJDK 64-Bit Server VM (build 25.402-b06, mixed mode)


[root@localhost ~]# htop --version

htop 3.3.0


[root@localhost ~]# R --version

R version 3.6.0 (2019-04-26) -- "Planting of a Tree"

Copyright (C) 2019 The R Foundation for Statistical Computing

Platform: x86_64-redhat-linux-gnu (64-bit)


2. 准备软件

解压软件及JDBC驱动(解压对应的软件包)

unzip benchmarksql-5.0.zip

tar -zxvf openGauss-1.1.0-JDBC.tar.gz


替换默认的postgresql驱动

cd /root/soft/benchmarksql-5.0/lib/postgres/

mv postgresql-9.3-1102.jdbc41.jar postgresql-9.3-1102.jdbc41.jar.bak

mv /soft/postgresql.jar .


使用ant编译

cd /root/soft/benchmarksql-5.0/

[root@localhost benchmarksql-5.0]# ant

Buildfile: /root/soft/benchmarksql-5.0/build.xml


init:

[mkdir] Created dir: /root/soft/benchmarksql-5.0/build


compile:

[javac] Compiling 11 source files to /root/soft/benchmarksql-5.0/build


dist:

[mkdir] Created dir: /root/soft/benchmarksql-5.0/dist

[jar] Building jar: /root/soft/benchmarksql-5.0/dist/BenchmarkSQL-5.0.jar


BUILD SUCCESSFUL

Total time: 2 seconds


3. 配置软件

配置props文件(配置文件切忌多余空格,否则会出现各种错误)

说明:进入run目录,会看到多个不同后缀名的props文件,不同的文件配置不同的数据库,由于我们需要压测postgresql和openGauss,openGauss兼容postgresql,需要配置props.pg文件。cp props.pg props.opengauss在配置文件中需要修改的包括conn,user, password(这三项用于连接指定的数据库,因此需要提前在postgresql中创建好对应的DB以及用户) 

cd /root/soft/benchmarksql-5.0/run

[root@localhost run]# cp props.pg props.openGauss

[root@localhost run]# vi props.openGauss

db=postgres

driver=org.postgresql.Driver

conn=jdbc:postgresql://192.168.52.3:26000/tpcc

user=benchmarksql

password=P@ssw0rdabc

warehouses=2

loadWorkers=4

terminals=2

runTxnsPerTerminal=0

runMins=5

limitTxnsPerMin=0

terminalWarehouseFixed=false

newOrderWeight=45

paymentWeight=43

orderStatusWeight=4

deliveryWeight=4

stockLevelWeight=4

resultDirectory=my_result_%tY-%tm-%td_%tH%tM%tS

osCollectorScript=./misc/os_collector_linux.py

osCollectorInterval=1

osCollectorSSHAddr=root@192.168.52.3

osCollectorDevices=net_ens33 blk_sda


注释

db=postgres 指定数据库类型,当前类型为postgres

driver=org.postgresql.Driver postgres数据库的JDBC驱动

conn=jdbc:postgresql://192.168.1.71:5496/benchmarksql postgres的连接字符串,格式为:conn=jdbc:postgresql://IP:端口/库名

user=benchmarksql 连接postgres的用户名

password=PostgreSQL5432 连接postgres的用户名的密码

warehouses=1 仓库数量,每个warehouse数据量大概在100MB左右,那么数据库大小为1000MB左右,默认1个仓库

loadWorkers=4 数据库初始化数据时候的进程数,默认4个load加载进程

terminals=1 指定终端数量,默认1个终端

runTxnsPerTerminal=10 指定压测每个终端执行的事务数量。如果该参数配置为非0时,下面的runMins参数必须设置为0

runMins=0 指定压测的时长(单位:分钟)。如果该值设置为非0值时,runTxnsPerTerminal参数必须设置为0。

limitTxnsPerMin=300 每分钟事务总数限制,该参数主要控制每分钟处理的事务数,事务数受terminals参数的影响,limitTxnsPerMin/terminals的值必须是正整数。

terminalWarehouseFixed=true 终端和仓库的绑定模式,设置为true时可以运行4.x兼容模式,意思为每个终端都有一个固定的仓库。设置为false时可以均匀的使用数据库整体配置。TPCC规定每个终端都必须有一个绑定的仓库,所以一般使用默认值true。

下面五个值的总和必须等于100,默认值为:45, 43, 4, 4,4 ,与TPC-C测试定义的比例一致,实际操作过程中,可以调整比重来适应各种场景。

newOrderWeight=45 新订单事务占总事务的45%

paymentWeight=43 支付订单事务占总事务的43%

orderStatusWeight=4 订单状态事务占总事务的4%

deliveryWeight=4 到货日期事务占总事务的4%

stockLevelWeight=4 查看现存货品的事务占总事务的4%

resultDirectory=my_result_%tY-%tm-%td_%tH%tM%tS 压测期间收集系统性能数据的目录(无需修改)

osCollectorScript=./misc/os_collector_linux.py 操作系统性能收集脚本(无需修改)

osCollectorInterval=1 操作系统收集操作间隔,默认为1秒

osCollectorSSHAddr=user@dbhost 需要收集系统性能的主机

osCollectorDevices=net_eth0 blk_sda 操作系统中被收集服务器的网卡名称和磁盘名称,根据个人环境进行调整


配置tableCreates.sql脚本(可适当调整表的表空间分布充分利用多块磁盘的IO)

cd /root/soft/benchmarksql-5.0/run/sql.common

[root@localhost sql.common]# cp tableCreates.sql tableCreates.sql.bak

[root@localhost sql.common]# vi tableCreates.sql

--CREATE TABLESPACE tbs1 location '/home/omm/data/tbs1';

--CREATE TABLESPACE tbs2 location '/home/omm/data/tbs2';


create table bmsql_config (

cfg_name varchar(30) primary key,

cfg_value varchar(50)

);


create table bmsql_warehouse (

w_id integer not null,

w_ytd decimal(12,2),

w_tax decimal(4,4),

w_name varchar(10),

w_street_1 varchar(20),

w_street_2 varchar(20),

w_city varchar(20),

w_state char(2),

w_zip char(9)

);


create table bmsql_district (

d_w_id integer not null,

d_id integer not null,

d_ytd decimal(12,2),

d_tax decimal(4,4),

d_next_o_id integer,

d_name varchar(10),

d_street_1 varchar(20),

d_street_2 varchar(20),

d_city varchar(20),

d_state char(2),

d_zip char(9)

);


create table bmsql_customer (

c_w_id integer not null,

c_d_id integer not null,

c_id integer not null,

c_discount decimal(4,4),

c_credit char(2),

c_last varchar(16),

c_first varchar(16),

c_credit_lim decimal(12,2),

c_balance decimal(12,2),

c_ytd_payment decimal(12,2),

c_payment_cnt integer,

c_delivery_cnt integer,

c_street_1 varchar(20),

c_street_2 varchar(20),

c_city varchar(20),

c_state char(2),

c_zip char(9),

c_phone char(16),

c_since timestamp,

c_middle char(2),

c_data varchar(500)

);


create sequence bmsql_hist_id_seq;


create table bmsql_history (

hist_id integer,

h_c_id integer,

h_c_d_id integer,

h_c_w_id integer,

h_d_id integer,

h_w_id integer,

h_date timestamp,

h_amount decimal(6,2),

h_data varchar(24)

);


create table bmsql_new_order (

no_w_id integer not null,

no_d_id integer not null,

no_o_id integer not null

);


create table bmsql_oorder (

o_w_id integer not null,

o_d_id integer not null,

o_id integer not null,

o_c_id integer,

o_carrier_id integer,

o_ol_cnt integer,

o_all_local integer,

o_entry_d timestamp

);


create table bmsql_order_line (

ol_w_id integer not null,

ol_d_id integer not null,

ol_o_id integer not null,

ol_number integer not null,

ol_i_id integer not null,

ol_delivery_d timestamp,

ol_amount decimal(6,2),

ol_supply_w_id integer,

ol_quantity integer,

ol_dist_info char(24)

);


create table bmsql_item (

i_id integer not null,

i_name varchar(24),

i_price decimal(5,2),

i_data varchar(50),

i_im_id integer

);


create table bmsql_stock (

s_w_id integer not null,

s_i_id integer not null,

s_quantity integer,

s_ytd integer,

s_order_cnt integer,

s_remote_cnt integer,

s_data varchar(50),

s_dist_01 char(24),

s_dist_02 char(24),

s_dist_03 char(24),

s_dist_04 char(24),

s_dist_05 char(24),

s_dist_06 char(24),

s_dist_07 char(24),

s_dist_08 char(24),

s_dist_09 char(24),

s_dist_10 char(24)

);


4. 配置与数据库服务器的ssh互信

执行如下命令行

ssh-keygen -t rsa

ssh-copy-id root@192.168.52.3 #password:P@ssw0rd123


五、配置openGauss DB主机

1. 创建数据库及用户(与前面props.openGauss文件配置保持一致)

[root@node1 ~]# su omm

[omm@node1 root]$ gsql -d postgres -p 26000 -ar

openGauss=# create user benchmarksql with sysadmin identified by 'P@ssw0rdabc';

CREATE ROLE

openGauss=# create database tpcc owner =benchmarksql encoding='UTF8';

CREATE DATABASE


2. 配置pg_hba.conf

[omm@prod ~]$ gs_guc reload -N all -I all -h "host tpcc benchmarksql 192.168.52.4/32 sha256"


/gaussdb/data/db1/pg_hba.conf


3. 备份数据目录,测试完毕后可以快速恢复

[omm@node1 ~]$ gs_ctl stop -D /gaussdb/data/db1

[omm@node1 ~]$ cp -r /gaussdb/data/db1 /gaussdb/data/db1_bak

[omm@node1 ~]$ gs_ctl start -D /gaussdb/data/db1


、BenchmarkSQL主机发起测试

1. 导入测试数据

cd /root/soft/benchmarksql-5.0/run

[root@localhost run]# ./runDatabaseBuild.sh props.openGauss ## 执行前,请务必将props.openGauss文件中的所有注释和多余空格删除,否则可能报错


特别说明上一步脚本执行后请检查库表是否创建、数据是否加载成功如过未成功请查看.sh脚本及执行日志进行判断,如果有必要则请手工执行加载脚本如下

[root@localhost run]# ./runLoader.sh props.openGauss

2. 运行TPCC测试

[root@localhost run]# ./runBenchmark.sh props.openGauss

19:04:56,061 [main] INFO jTPCC : Term-00,

19:04:56,070 [main] INFO jTPCC : Term-00, +-------------------------------------------------------------+

19:04:56,070 [main] INFO jTPCC : Term-00, BenchmarkSQL v5.0

19:04:56,070 [main] INFO jTPCC : Term-00, +-------------------------------------------------------------+

19:04:56,070 [main] INFO jTPCC : Term-00, (c) 2003, Raul Barbosa

19:04:56,070 [main] INFO jTPCC : Term-00, (c) 2004-2016, Denis Lussier

19:04:56,072 [main] INFO jTPCC : Term-00, (c) 2016, Jan Wieck

19:04:56,072 [main] INFO jTPCC : Term-00, +-------------------------------------------------------------+

19:04:56,072 [main] INFO jTPCC : Term-00,

19:04:56,072 [main] INFO jTPCC : Term-00, db=postgres

19:04:56,072 [main] INFO jTPCC : Term-00, driver=org.postgresql.Driver

19:04:56,072 [main] INFO jTPCC : Term-00, conn=jdbc:postgresql://192.168.52.3:26000/tpcc

19:04:56,072 [main] INFO jTPCC : Term-00, user=benchmarksql

19:04:56,072 [main] INFO jTPCC : Term-00,

19:04:56,072 [main] INFO jTPCC : Term-00, warehouses=2

19:04:56,072 [main] INFO jTPCC : Term-00, terminals=2

19:04:56,073 [main] INFO jTPCC : Term-00, runMins=5

19:04:56,073 [main] INFO jTPCC : Term-00, limitTxnsPerMin=0

19:04:56,073 [main] INFO jTPCC : Term-00, terminalWarehouseFixed=false

19:04:56,073 [main] INFO jTPCC : Term-00,

19:04:56,073 [main] INFO jTPCC : Term-00, newOrderWeight=45

19:04:56,073 [main] INFO jTPCC : Term-00, paymentWeight=43

19:04:56,074 [main] INFO jTPCC : Term-00, orderStatusWeight=4

19:04:56,074 [main] INFO jTPCC : Term-00, deliveryWeight=4

19:04:56,074 [main] INFO jTPCC : Term-00, stockLevelWeight=4

19:04:56,074 [main] INFO jTPCC : Term-00,

19:04:56,074 [main] INFO jTPCC : Term-00, resultDirectory=my_result_%tY-%tm-%td_%tH%tM%tS

19:04:56,074 [main] INFO jTPCC : Term-00, osCollectorScript=./misc/os_collector_linux.py

19:04:56,074 [main] INFO jTPCC : Term-00,

19:04:56,089 [main] INFO jTPCC : Term-00, copied props.openGauss to my_result_2024-02-28_190456/run.properties

19:04:56,089 [main] INFO jTPCC : Term-00, created my_result_2024-02-28_190456/data/runInfo.csv for runID 34

19:04:56,089 [main] INFO jTPCC : Term-00, writing per transaction results to my_result_2024-02-28_190456/data/result.csv

19:04:56,090 [main] INFO jTPCC : Term-00, osCollectorScript=./misc/os_collector_linux.py

19:04:56,090 [main] INFO jTPCC : Term-00, osCollectorInterval=1

19:04:56,090 [main] INFO jTPCC : Term-00, osCollectorSSHAddr=root@192.168.52.3

19:04:56,090 [main] INFO jTPCC : Term-00, osCollectorDevices=net_ens33 blk_sda

19:04:56,169 [main] INFO jTPCC : Term-00,

二月 28, 2024 7:04:56 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: [93b50383-dbd7-400a-a99d-86f4ba0902a0] Try to connect. IP: 192.168.52.3:26000

二月 28, 2024 7:05:06 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: [192.168.52.4:58872/192.168.52.3:26000] Connection is established. ID: 93b50383-dbd7-400a-a99d-86f4ba0902a0

二月 28, 2024 7:05:06 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: Connect complete. ID: 93b50383-dbd7-400a-a99d-86f4ba0902a0

19:05:06,307 [main] INFO jTPCC : Term-00, C value for C_LAST during load: 173

19:05:06,307 [main] INFO jTPCC : Term-00, C value for C_LAST this run: 246

19:05:06,307 [main] INFO jTPCC : Term-00, 二月 28, 2024 7:05:06 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImplMB

信息: [f43d5730-4a2d-4679-bf40-8ca74c9a2498] Try to connect. IP: 192.168.52.3:26000

二月 28, 2024 7:05:16 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: [192.168.52.4:58874/192.168.52.3:26000] Connection is established. ID: f43d5730-4a2d-4679-bf40-8ca74c9a2498

二月 28, 2024 7:05:16 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: Connect complete. ID: f43d5730-4a2d-4679-bf40-8ca74c9a2498

二月 28, 2024 7:05:16 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: [204511eb-81ef-4c16-a0ab-9f64a4b2fa55] Try to connect. IP: 192.168.52.3:26000

二月 28, 2024 7:05:26 下午 org.postgresql.core.v3.ConnectionFactoryImpl openConnectionImpl

信息: [192.168.52.4:58876/192.168.52.3:26000] Connection is established. ID: 204511eTerm-00, Running Average tpmTOTAL: 7005.81 19:10:26,411 [Thread-2] INFO jTPCC : Term-00, / 29MB 19:10:26,412 [Thread-2] INFO jTPCC : Term-00, 19:10:26,412 [Thread-2] INFO jTPCC : Term-00, Measured tpmC (NewOrders) = 3160.65

19:10:26,413 [Thread-2] INFO jTPCC : Term-00, Measured tpmTOTAL = 7005.82

19:10:26,413 [Thread-2] INFO jTPCC : Term-00, Session Start = 2024-02-28 19:05:26

19:10:26,413 [Thread-2] INFO jTPCC : Term-00, Session End = 2024-02-28 19:10:26

19:10:26,413 [Thread-2] INFO jTPCC : Term-00, Transaction Count = 35032


说明执行前,请务必将props.openGauss.1000w文件的所有注释和多余空格删除,否则可能报错。 terminals参数设置有大小范围要求,太大会报错:ERROR jTPCC : Term-00, Invalid number of terminals!y



重跑./runDatabaseDestroy.sh props.opengauss //清理数据或将5.3中的备份恢复

生成报告查看测试结果

1. 生成报告

测试结束后,run目录下会生成一个新目录:my_result_%tY-%tm-%td_%tH%tM%tS。使用 generateReport.sh脚本创建具有图形的 HTML 文件:

[root@localhost run]# ./generateReport.sh my_result_2024-02-28_190456/

Generating my_result_2024-02-28_190456//tpm_nopm.png ... OK

Generating my_result_2024-02-28_190456//latency.png ... OK

Generating my_result_2024-02-28_190456//cpu_utilization.png ... OK

Generating my_result_2024-02-28_190456//dirty_buffers.png ... OK

Generating my_result_2024-02-28_190456//blk_sda_iops.png ... OK

Generating my_result_2024-02-28_190456//blk_sda_kbps.png ... OK

Generating my_result_2024-02-28_190456//net_ens33_iops.png ... OK

Generating my_result_2024-02-28_190456//net_ens33_kbps.png ... OK

Generating my_result_2024-02-28_190456//report.html ... OK


随后会在my_result_* 目录下生成一个html文件和数张图片,下载到本地,在浏览器中打开report.html,可以看到tpmc的曲线和系统硬件监控信息

2. html报告查看


作者:hhh1218

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。