知识蒸馏DEiT算法实战:使用RegNet蒸馏DEiT模型

举报
AI浩 发表于 2023/01/30 06:41:44 2023/01/30
【摘要】 @[toc] 摘要论文翻译:【第58篇】DEiT:通过注意力训练数据高效的图像transformer &蒸馏DEiT通过引入一个蒸馏token实现蒸馏,蒸馏的方式有两种:1、将蒸馏token作为Teacher标签。两个token通过注意力在transformer中相互作用。实现蒸馏。用法参考:DEiT实战:使用DEiT实现图像分类任务(一)2、通过卷积神经网络去蒸馏蒸馏token,让tran...

@[toc]

摘要

论文翻译:【第58篇】DEiT:通过注意力训练数据高效的图像transformer &蒸馏
DEiT通过引入一个蒸馏token实现蒸馏,蒸馏的方式有两种:

  • 1、将蒸馏token作为Teacher标签。两个token通过注意力在transformer中相互作用。实现蒸馏。用法参考:
    DEiT实战:使用DEiT实现图像分类任务(一)
  • 2、通过卷积神经网络去蒸馏蒸馏token,让transformer从卷积神经网络学习一些卷积特征,比如归纳偏置这样的特征。这一点作者也是表示疑问。

这篇文章就是从第二点入手,使用卷积神经网络蒸馏DEiT。
讲解视频:https://www.zhihu.com/zvideo/1588881049425276928

最终结论

先把结论说了吧! Teacher网络使用RegNet的regnetx_160网络,Student网络使用DEiT的deit_tiny_distilled_patch16_224模型。如下表

网络 epochs ACC
DEiT 100 94%
RegNet 100 96%
DEiT+Hard 100 95%

在这里插入图片描述

项目结构

DeiT_dist_demo
├─data
│  ├─train
│  │  ├─Black-grass
│  │  ├─Charlock
│  │  ├─Cleavers
│  │  ├─Common Chickweed
│  │  ├─Common wheat
│  │  ├─Fat Hen
│  │  ├─Loose Silky-bent
│  │  ├─Maize
│  │  ├─Scentless Mayweed
│  │  ├─Shepherds Purse
│  │  ├─Small-flowered Cranesbill
│  │  └─Sugar beet
│  └─val
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet
├─models
│  └─models.py
├─losses.py
├─teacher_train.py
├─student_train.py
├─train_kd.py
└─test.py

data:数据集,分为train和val。
models:存放模型文件。
losses.py:loss文件,计算外部蒸馏loss。
teacher_train.py:训练Teacher模型
student_train.py:训练Student模型
train_kd.py:训练蒸馏模型
test:测试结果。

模型和loss

模型模型models.py和loss脚本losses.py需要从官方模型获取,链接:https://github.com/facebookresearch/deit。

model.py代码

# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import torch
import torch.nn as nn
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_

__all__ = [
    'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224',
    'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224',
    'deit_base_distilled_patch16_224', 'deit_base_patch16_384',
    'deit_base_distilled_patch16_384',
]

class DistilledVisionTransformer(VisionTransformer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        num_patches = self.patch_embed.num_patches
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))
        self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
        trunc_normal_(self.dist_token, std=.02)
        trunc_normal_(self.pos_embed, std=.02)
        self.head_dist.apply(self._init_weights)
    def forward_features(self, x):
        # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
        # with slight modifications to add the dist_token
        B = x.shape[0]
        x = self.patch_embed(x)
        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        dist_token = self.dist_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, dist_token, x), dim=1)
        x = x + self.pos_embed
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)
        return x[:, 0], x[:, 1]

    def forward(self, x):
        x, x_dist = self.forward_features(x)
        x = self.head(x)
        x_dist = self.head_dist(x_dist)
        if self.training:
            return x, x_dist
        else:
            # during inference, return the average of both classifier predictions
            return (x + x_dist) / 2


@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
    model = VisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    print(model.default_cfg)
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
    model = VisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model


@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
    model = DistilledVisionTransformer(
        img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(
            url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
            map_location="cpu", check_hash=True
        )
        model.load_state_dict(checkpoint["model"])
    return model

losses.py代码

# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Implements the knowledge distillation loss
"""
import torch
from torch.nn import functional as F


class DistillationLoss(torch.nn.Module):
    """
    This module wraps a standard criterion and adds an extra knowledge distillation loss by
    taking a teacher model prediction and using it as additional supervision.
    """
    def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module,
                 distillation_type: str, alpha: float, tau: float):
        super().__init__()
        self.base_criterion = base_criterion
        self.teacher_model = teacher_model
        assert distillation_type in ['none', 'soft', 'hard']
        self.distillation_type = distillation_type
        self.alpha = alpha
        self.tau = tau

    def forward(self, inputs, outputs, labels):
        """
        Args:
            inputs: The original inputs that are feed to the teacher model
            outputs: the outputs of the model to be trained. It is expected to be
                either a Tensor, or a Tuple[Tensor, Tensor], with the original output
                in the first position and the distillation predictions as the second output
            labels: the labels for the base criterion
        """
        outputs_kd = None
        if not isinstance(outputs, torch.Tensor):
            # assume that the model outputs a tuple of [outputs, outputs_kd]
            outputs, outputs_kd = outputs
        base_loss = self.base_criterion(outputs, labels)
        if self.distillation_type == 'none':
            return base_loss

        if outputs_kd is None:
            raise ValueError("When knowledge distillation is enabled, the model is "
                             "expected to return a Tuple[Tensor, Tensor] with the output of the "
                             "class_token and the dist_token")
        # don't backprop throught the teacher
        with torch.no_grad():
            teacher_outputs = self.teacher_model(inputs)

        if self.distillation_type == 'soft':
            T = self.tau
            # taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
            # with slight modifications
            distillation_loss = F.kl_div(
                F.log_softmax(outputs_kd / T, dim=1),
                #We provide the teacher's targets in log probability because we use log_target=True 
                #(as recommended in pytorch https://github.com/pytorch/pytorch/blob/9324181d0ac7b4f7949a574dbc3e8be30abe7041/torch/nn/functional.py#L2719)
                #but it is possible to give just the probabilities and set log_target=False. In our experiments we tried both.
                F.log_softmax(teacher_outputs / T, dim=1),
                reduction='sum',
                log_target=True
            ) * (T * T) / outputs_kd.numel()
            #We divide by outputs_kd.numel() to have the legacy PyTorch behavior. 
            #But we also experiments output_kd.size(0) 
            #see issue 61(https://github.com/facebookresearch/deit/issues/61) for more details
        elif self.distillation_type == 'hard':
            distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))

        loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
        return loss

训练Teacher模型

Teacher选用regnetx_160,这个模型的预训练模型比较大,如果不能直接下来,可以借助下载工具,比如某雷下载。

步骤

新建teacher_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from timm.models import regnetx_160

import json
import os
# 定义训练过程

定义训练和验证函数

# 设置随机因子
def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True

# 训练函数
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data).to(device), Variable(target).to(device)
        out = model(data)
        loss = criterion(out, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            out = model(data)
            loss = criterion(out, target)
            _, pred = torch.max(out.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

定义全局参数

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'TeacherModel'
    if os.path.exists(file_dir):
        print('true')

        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 100
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    SEED=42
    seed_everything(SEED)

图像预处理与增强

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])


读取数据

使用pytorch默认读取数据的方式。

   # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型和Loss

    # 实例化模型并且移动到GPU
    criterion = nn.CrossEntropyLoss()
    model_ft = regnetx_160(pretrained=True)
    model_ft.reset_classifier(num_classes=12)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    # 训练
    val_acc_list= {}
    for epoch in range(1, EPOCHS + 1):
        train(model_ft, DEVICE, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft, DEVICE, test_loader)
        val_acc_list[epoch]=acc
        with open('result.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'TeacherModel/model_final.pth')

完成上面的代码就可以开始训练Teacher网络了。

学生网络

学生网络选用deit_tiny_distilled_patch16_224,是一个比较小一点的网络了,模型的大小有20M。训练100个epoch。

步骤

新建student_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from models.models import deit_tiny_distilled_patch16_224

import json
import os

定义训练和验证函数

# 设置随机因子
def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
# 定义训练过程
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = Variable(data).to(device), Variable(target).to(device)
        out = model(data)[0]
        loss = criterion(out, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            out = model(data)
            loss = criterion(out, target)
            _, pred = torch.max(out.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

这里要注意一点,由于我们使用的官方的模型,在做正常的训练时,返回值有两个,分别是x和x_dist。
在这里插入图片描述
loss计算只需前一个值,即:

 out = model(data)[0]

在验证的时候,返回一个值。所以不用做上面的操作了,即:

 out = model(data)

定义全局参数

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'StudentModel'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)
    # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 16
    EPOCHS = 100
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    SEED=42
    seed_everything(SEED)

图像预处理与增强

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型和Loss

	 # 实例化模型并且移动到GPU
    criterion = nn.CrossEntropyLoss()
    model_ft = deit_tiny_distilled_patch16_224(pretrained=True)
    num_ftrs = model_ft.head.in_features
    model_ft.head = nn.Linear(num_ftrs, 12)
    num_ftrs_dist = model_ft.head_dist.in_features
    model_ft.head_dist = nn.Linear(num_ftrs_dist, 12)
    print(model_ft)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    # 训练
    val_acc_list= {}
    for epoch in range(1, EPOCHS + 1):
        train(model_ft, DEVICE, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft, DEVICE, test_loader)
        val_acc_list[epoch]=acc
        with open('result_student.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'StudentModel/model_final.pth')

完成上面的代码就可以开始训练Student网络了。

蒸馏学生网络

学生网络继续选用deit_tiny_distilled_patch16_224,使用Teacher网络蒸馏学生网络,训练100个epoch。

步骤

新建train_kd.py.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.loss import LabelSmoothingCrossEntropy
from torchvision import datasets
from models.models import deit_tiny_distilled_patch16_224
import json
import os
from losses import DistillationLoss

定义训练和验证函数

# 设置随机因子
def seed_everything(seed=42):
    os.environ['PYHTONHASHSEED'] = str(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    
# 定义训练过程
def train(s_net,t_net, device,criterionKD,train_loader, optimizer, epoch):
    s_net.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        out_s = s_net(data)
        loss = criterionKD(data,out_s, target)
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item()))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:{},loss:{}'.format(epoch, ave_loss))

Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device,criterionCls, test_loader):
    global Best_ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            out_s = model(data)
            loss = criterionCls(out_s, target)
            _, pred = torch.max(out_s.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        if acc > Best_ACC:
            torch.save(model, file_dir + '/' + 'best.pth')
            Best_ACC = acc
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        return acc

定义全局参数

if __name__ == '__main__':
    # 创建保存模型的文件夹
    file_dir = 'KDModel'
    if os.path.exists(file_dir):
        print('true')
        os.makedirs(file_dir, exist_ok=True)
    else:
        os.makedirs(file_dir)

    # 设置全局参数
    modellr = 1e-4
    BATCH_SIZE = 4
    EPOCHS = 100
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    SEED=42
    seed_everything(SEED)
    distillation_type='hard'  #['none', 'soft', 'hard']
    distillation_alpha=0.5
    distillation_tau=1.0

distillation_type:蒸馏的类型,本文选用hard。
distillation_alpha:α系数,蒸馏loss的权重系数。
distillation_tau:T,蒸馏温度的意思。

图像预处理与增强

 # 数据预处理7
    transform = transforms.Compose([
        transforms.RandomRotation(10),
        transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
        transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])

    ])
    transform_test = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
    ])


读取数据

使用pytorch默认读取数据的方式。

    # 读取数据
    dataset_train = datasets.ImageFolder('data/train', transform=transform)
    dataset_test = datasets.ImageFolder("data/val", transform=transform_test)
    with open('class.txt', 'w') as file:
        file.write(str(dataset_train.class_to_idx))
    with open('class.json', 'w', encoding='utf-8') as file:
        file.write(json.dumps(dataset_train.class_to_idx))
    # 导入数据
    train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
    test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型和Loss

 	model_ft = deit_tiny_distilled_patch16_224(pretrained=True)
    num_ftrs = model_ft.head.in_features
    model_ft.head = nn.Linear(num_ftrs, 12)
    num_ftrs_dist = model_ft.head_dist.in_features
    model_ft.head_dist = nn.Linear(num_ftrs_dist, 12)
    print(model_ft)
    model_ft.to(DEVICE)
    # 选择简单暴力的Adam优化器,学习率调低
    optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
    cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)
    teacher_model=torch.load('TeacherModel/best.pth')
    teacher_model.eval()
    # 实例化模型并且移动到GPU
    criterion = LabelSmoothingCrossEntropy(smoothing=0.1)
    criterionKD = DistillationLoss(
        criterion, teacher_model, distillation_type, distillation_alpha, distillation_tau
    )
    criterionCls = nn.CrossEntropyLoss()
    # 训练
    val_acc_list= {}
    for epoch in range(1, EPOCHS + 1):
        train(model_ft,teacher_model, DEVICE,criterionKD, train_loader, optimizer, epoch)
        cosine_schedule.step()
        acc=val(model_ft,DEVICE,criterionCls , test_loader)
        val_acc_list[epoch]=acc
        with open('result_kd.json', 'w', encoding='utf-8') as file:
            file.write(json.dumps(val_acc_list))
    torch.save(model_ft, 'KDModel/model_final.pth')

完成上面的代码就可以开始蒸馏模式!!!

结果比对

加载保存的结果,然后绘制acc曲线。

import numpy as np
from matplotlib import pyplot as plt
import json
teacher_file='result.json'
student_file='result_student.json'
student_kd_file='result_kd.json'
def read_json(file):
    with open(file, 'r', encoding='utf8') as fp:
        json_data = json.load(fp)
        print(json_data)
    return json_data

teacher_data=read_json(teacher_file)
student_data=read_json(student_file)
student_kd_data=read_json(student_kd_file)


x =[int(x) for x in  list(dict(teacher_data).keys())]
print(x)

plt.plot(x, list(teacher_data.values()), label='teacher')
plt.plot(x,list(student_data.values()), label='student without IRG')
plt.plot(x, list(student_kd_data.values()), label='student with IRG')

plt.title('Test accuracy')
plt.legend()

plt.show()

在这里插入图片描述

总结

本文重点讲解了如何使用外部模型蒸馏算法对DeiT模型进行蒸馏。希望能帮助到大家,如果觉得有用欢迎收藏、点赞和转发;如果有问题也可以留言讨论。
本次实战用到的代码和数据集详见:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87323531

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。