【CANN训练营第三季】MMDeploy搭建手记(Atlas 200DK+CANN 5.1RC2)

举报
张辉 发表于 2022/12/06 05:47:20 2022/12/06
【摘要】 MMDeploy@200DK

1、前言

其实张小白这台Atlas 200DK玩转CANN 5.1.RC2的攻略在这里:

CANN 5.1.RC2

(1)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略1/2 https://bbs.huaweicloud.cn/blogs/371575

(2)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略3 https://bbs.huaweicloud.cn/blogs/371576

(3)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略4 https://bbs.huaweicloud.cn/blogs/371577

(4)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略5 https://bbs.huaweicloud.cn/blogs/371578

(5)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略6 https://bbs.huaweicloud.cn/blogs/371579

(6)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略7 https://bbs.huaweicloud.cn/blogs/371580

(7)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略8 https://bbs.huaweicloud.cn/blogs/371581

(8)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略9 https://bbs.huaweicloud.cn/blogs/371583

(9)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略10 https://bbs.huaweicloud.cn/blogs/371584

(10)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略11 https://bbs.huaweicloud.cn/blogs/371600

(11)Atlas 200DK+CANN 5.1.RC2+MindStudio5.0.RC2+MindX SDK 3.0玩转攻略12 https://bbs.huaweicloud.cn/blogs/371775


但是,昇腾发展也是日新月异,这不,刚到2022年年底,CANN就已经升级到V6了。

然而,张小白还是要在原来CANN 5.1.RC2的基础上试验下MMDeploy的。

cke_7596.jpeg

2、确认Atlas 200DK的软件环境

先确认下这台200DK中运行的版本是CANN 5.1.RC2:

cke_12310.png

检查软件环境:

cke_36177.png

gcc 7.5

python 3.9

没有conda环境

cmake 3.10.2版本,低了。

3、安装cmake 3.24

先升级cmake:

下载cmake 3.24:

wget https://github.com/Kitware/CMake/releases/download/v3.24.3/cmake-3.24.3.tar.gz

cke_61652.png

tar -xvf cmake-3.24.3.tar.gz

cke_62090.png

cd cmake-3.24.3

./configure

cke_63082.png

cke_63608.png

make -j$(nproc)

cke_64434.png

cke_130.png

sudo make install

cke_527.png

cke_886.png

检查cmake版本:

cmake --version

cke_3665.png

把/usr/local/bin的路径放到/usr/bin前面

在.bashrc中加入以下语句:

cke_24986.png

source ~/.bashrc使其生效。

cke_35934.png

可见cmake已升级为3.24版本。

4、安装bz2

安装bz2依赖包:

sudo apt-get install libbz2-dev

cke_374.png

5、重新编译安装Python 3.9.7

切换到Python 3.9的目录 

cd /usr/local/python3.9.7/bin

cke_448.png

这里只有pip3,没有pip。

做个软链接:sudo ln -s pip3 pip

cke_3717.png

在 /home/HwHiAiUser下进入python 3.9.7的源码目录:

cd ~/Python-3.9.7

make -j$(nproc)

cke_22104.png

sudo make install

cke_23001.png

cke_23451.png

6、安装PyTorch

pip install torch==1.8.1 torchvision==0.9.1 --extra-index-url https://download.pytorch.org/whl/cpu

cke_5308.png

7、安装mim

pip install openmim -i https://pypi.tuna.tsinghua.edu.cn/simple

cke_6894.png

cke_7436.png

8、安装click

pip install click==7.1.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

cke_7868.png

9、安装mmcv

mim install mmcv-full -i https://pypi.tuna.tsinghua.edu.cn/simple

cke_24173.png

cke_939.png

耐心等待安装完毕。

10、下载MMDeploy代码仓

由于github难以连接,在这里下载github在gitee的国内镜像(当然这就导致了可能gitee代码可能并非是github最新代码的问题)

git clone --recursive https://gitee.com/chen-hong-chhhh/mmdeploy

cke_1387.png

11、安装MMDeploy的模型转换器

cd mmdeploy

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -v -e .

cke_2184.png

cke_2575.png

cke_2905.png

cke_3265.png

12、编译安装MMDeploy的SDK

source ~/Ascend/ascend-toolkit/set_env.sh

cke_24693.png

cd ~/mmdeploy

mkdir -p build && cd build

cmake .. -DMMDEPLOY_BUILD_SDK=ON -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON -DMMDEPLOY_TARGET_BACKENDS=acl

cke_26519.png

make -j$(nproc)

cke_27160.png

cke_27413.png

cke_27648.png

make install

cke_29075.png

cke_29552.png

13、验证MMDeploy的模型转换器是否部署成功

cd ~/mmdeploy

python tools/check_env.py

cke_31433.png

cke_31768.png

14、验证MMDeploy的SDK是否部署成功

export PYTHONPATH=$(pwd)/build/lib:$PYTHONPATH

python -c "import mmdeploy_python"

cke_36447.png

15、安装openmmlab的算法库mmcls

pip install mmcls -i https://pypi.tuna.tsinghua.edu.cn/simple

cke_2135.png

16、下载ResNet18的Pytorch模型

cd ~/mmdeploy

mim download mmcls --config resnet18_8xb32_in1k --dest .

cke_4865.png

可以看到如下的文件:

cke_5545.png

17、ResNet18模型转换

先编辑一个resnet18.sh文件:

python tools/deploy.py configs/mmcls/classification_ascend_static-224x224.py resnet18_8xb32_in1k.py resnet18_8xb32_in1k_20210831-fbbb1da6.pth tests/data/tiger.jpeg --work-dir mmdeploy_models/mmcls/resnet18/cann --device cpu --dump-info
复制

然后执行这个文件:sh ./resnet18.sh

cke_10415.png

可以看到,先执行了torch2onnx,然后调用了atc进行模型转换:

atc --model=mmdeploy_models/mmcls/resnet18/cann/end2end.onnx --framework=5 --output=mmdeploy_models/mmcls/resnet18/cann/end2end --soc_version=Ascend310 --input_format=NCHW --input_shape=input:1,3,224,224

framework=5表示ONNX格式。

cke_18601.png

模型转换成功。

进入模型的目录看看:

cd ~/mmdeploy/mmdeploy_models/mmcls/resnet18/cann

cke_21440.png

另外,打开两个json文件看看模型的Meta信息:

detail.json

cke_26306.png

deploy.json

cke_28501.png

18、安装openmmlab的算法库mmdet

pip install mmdet -i https://pypi.tuna.tsinghua.edu.cn/simple

cke_30882.png

19、下载FastRCNN的Pytorch模型

mim download mmdet --config faster_rcnn_r50_fpn_1x_coco --dest .

cke_33392.png

20、FasterRCNN模型转换

先编辑一个faster_rcnn.sh文件:

python tools/deploy.py configs/mmdet/detection/detection_ascend_static-800x1344.py faster_rcnn_r50_fpn_1x_coco.py faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth demo/resources/det.jpg --work-dir mmdeploy_models/mmdet/faster_rcnn/cann --device cpu --dump-info
复制

然后执行这个文件:sh ./faster_rcnn.sh

此时可能会遇到找不到det.jpg文件的报错。

可以去github主仓下载det.jpg文件,将其上传到200DK的~/demo/resources目录:

cke_39163.png

重新执行:sh ./faster_rcnn.sh

cke_831.png

cke_1080.png

同样的,耐心等待atc转换结束: atc --model=mmdeploy_models/mmdet/faster_rcnn/cann/end2end.onnx --framework=5 --output=mmdeploy_models/mmdet/faster_rcnn/cann/end2end --soc_version=Ascend310 --input_format=NCHW --input_shape=input:1,3,800,1344 

转换完成。

查看下结果:

cd ~/mmdeploy/mmdeploy_models/mmdet/faster_rcnn/cann

可以看到onnx模型、om离线模型和json文件都已经生成。

deploy.json


    "version": "0.10.0",
    "task": "Detector",
    "models": [
        {
            "name": "fasterrcnn",
            "net": "end2end.om",
            "weights": "",
            "backend": "ascend",
            "precision": "FP32",
            "batch_size": 1,
            "dynamic_shape": false
        }
    ],
    "customs": []
}
复制


detail.json

{
    "version": "0.10.0",
    "codebase": {
        "task": "ObjectDetection",
        "codebase": "mmdet",
        "version": "2.26.0",
        "pth": "faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth",
        "config": "faster_rcnn_r50_fpn_1x_coco.py"
    },
    "codebase_config": {
        "type": "mmdet",
        "task": "ObjectDetection",
        "model_type": "end2end",
        "post_processing": {
            "score_threshold": 0.05,
            "confidence_threshold": 0.005,
            "iou_threshold": 0.5,
            "max_output_boxes_per_class": 200,
            "pre_top_k": 5000,
            "keep_top_k": 100,
            "background_label_id": -1
        }
    },
    "onnx_config": {
        "type": "onnx",
        "export_params": true,
        "keep_initializers_as_inputs": false,
        "opset_version": 11,
        "save_file": "end2end.onnx",
        "input_names": [
            "input"
        ],
        "output_names": [
            "dets",
            "labels"
        ],
        "input_shape": [
            1344,
            800
        ],
        "optimize": true
    },
    "backend_config": {
        "type": "ascend",
        "model_inputs": [
            {
                "input_shapes": {
                    "input": [
                        1,
                        3,
                        800,
                        1344
                    ]
                }
            }
        ]
    },
    "calib_config": {}
}
复制

pipeline.json:

{
    "pipeline": {
        "input": [
            "img"
        ],
        "output": [
            "post_output"
        ],
        "tasks": [
            {
                "type": "Task",
                "module": "Transform",
                "name": "Preprocess",
                "input": [
                    "img"
                ],
                "output": [
                    "prep_output"
                ],
                "transforms": [
                    {
                        "type": "LoadImageFromFile"
                    },
                    {
                        "type": "Resize",
                        "keep_ratio": false,
                        "size": [
                            800,
                            1344
                        ]
                    },
                    {
                        "type": "Normalize",
                        "mean": [
                            123.675,
                            116.28,
                            103.53
                        ],
                        "std": [
                            58.395,
                            57.12,
                            57.375
                        ],
                        "to_rgb": true
                    },
                    {
                        "type": "Pad",
                        "size_divisor": 1
                    },
                    {
                        "type": "DefaultFormatBundle"
                    },
                    {
                        "type": "Collect",
                        "keys": [
                            "img"
                        ],
                        "meta_keys": [
                            "valid_ratio",
                            "filename",
                            "img_norm_cfg",
                            "scale_factor",
                            "flip_direction",
                            "ori_filename",
                            "ori_shape",
                            "pad_shape",
                            "flip",
                            "img_shape"
                        ]
                    }
                ],
                "sha256": "83ba9eb66901a32e1fe5ebcff0a6375706597472e185e1d94aee2043a7399d3b",
                "fuse_transform": false
            },
            {
                "name": "fasterrcnn",
                "type": "Task",
                "module": "Net",
                "input": [
                    "prep_output"
                ],
                "output": [
                    "infer_output"
                ],
                "input_map": {
                    "img": "input"
                },
                "output_map": {}
            },
            {
                "type": "Task",
                "module": "mmdet",
                "name": "postprocess",
                "component": "ResizeBBox",
                "params": {
                    "rpn": {
                        "nms_pre": 1000,
                        "max_per_img": 1000,
                        "nms": {
                            "type": "nms",
                            "iou_threshold": 0.7
                        },
                        "min_bbox_size": 0
                    },
                    "rcnn": {
                        "score_thr": 0.05,
                        "nms": {
                            "type": "nms",
                            "iou_threshold": 0.5
                        },
                        "max_per_img": 100
                    },
                    "min_bbox_size": 0,
                    "score_thr": 0.05
                },
                "output": [
                    "post_output"
                ],
                "input": [
                    "prep_output",
                    "infer_output"
                ]
            }
        ]
    }
}

21、完成ResNet18和FasterRCNN的模型推理

编辑文件 resnet18_inference.py

import cv2
from mmdeploy_python import Classifier

# create a classifer
classifier = Classifier(model_path="mmdeploy_models/mmcls/resnet18/cann",device_name='npu',device_id=0)

#read an image
img = cv2.imread("tests/data/tiger.jpeg")

#person inference
result = classifier(img)

#show result
for label_id, score in result:
        print(label_id,score)
复制

python resnet18_inference.py

cke_24534.png

cke_25698.png

cke_26365.png

贴出文本结果:

[2022-12-04 03:51:32.101] [mmdeploy] [info] [acl_net.cpp:65] ACL initialized.
[2022-12-04 03:51:32.407] [mmdeploy] [info] [acl_net.cpp:314] n_inputs = 1, dynamic_tensor_index_ = -1
[2022-12-04 03:51:32.410] [mmdeploy] [info] [acl_net.cpp:330] input [1, 3, 224, 224]
[2022-12-04 03:51:32.411] [mmdeploy] [info] [acl_net.cpp:369] Softmax_49:0:output [1, 1000]
[2022-12-04 03:51:32.419] [mmdeploy] [info] [inference.cpp:50] ["img"] <- ["img"]
[2022-12-04 03:51:32.419] [mmdeploy] [info] [inference.cpp:61] ["post_output"] -> ["cls"]
292 0.92626953125
282 0.07257080078125
290 0.0008058547973632812
281 0.00024580955505371094
340 5.65648078918457e-05
[2022-12-04 03:51:32.522] [mmdeploy] [info] [acl_net.cpp:83] ACL finalized.
HwHiAiUser@davinci-mini:~/mmdeploy$
复制

可见,92%的可能性是292的分类。

编辑文件 faster_rcnn_inference.py

import cv2
from mmdeploy_python import Detector

#create a detector
detector = Detector(
        model_path = 'mmdeploy_models/mmdet/faster_rcnn/cann',
        device_name='npu',
        device_id=0)

#read an image
img = cv2.imread('demo/resources/det.jpg')
#perform inference
bboxes, labels, _ = detector(img)

#visualize result
for index, (bbox, label_id) in enumerate(zip(bboxes,labels)):
        [left, top, right, bottom],score = bbox[0:4].astype(int),bbox[4]
        if score < 0.3:
                continue
        cv2.rectangle(img, (left,top),(right,bottom),(0,255,0))

cv2.imwrite('faster_rcnn_output_detection.png',img)

执行推理:

python  faster_rcnn_inference.py

cke_69127.png

cke_69648.png

在当前目录下生成了一个结果图片:faster_rcnn_output_detection.png

cke_73450.png

将其传到windows上打开看看:

cke_78527.png

可见已检测成功。

22、完成ResNet50和RetinaNet的模型转换作业

根据作业的要求,将resnet18改为resnet50,将faster_rcnn改为retinanet,再试试即可。

下面具体尝试:

(1)下载resnet50的pytorch模型

mim download mmcls --config resnet50_8xb32_in1k --dest .

cke_89581.png

(2)下载resnet50的retinanet模型

mim download mmdet --config retinanet_r50_fpn_1x_coco --dest .

cke_91159.png

(3)resnet50模型转换

resnet50.sh:

python tools/deploy.py configs/mmcls/classification_ascend_static-224x224.py resnet50_8xb32_in1k.py resnet50_8xb32_in1k_20210831-ea4938fc.pth tests/data/tiger.jpeg --work-dir mmdeploy_models/mmcls/resnet50/cann --device cpu --dump-info 

cke_432.png

cke_1451.png

cke_2024.png

查看转换结果:

cke_6517.png

(4)RetinaNet模型转换

retina.sh:

python tools/deploy.py configs/mmdet/detection/detection_ascend_static-800x1344.py retinanet_r50_fpn_1x_coco.py retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth demo/resources/det.jpg --work-dir mmdeploy_models/mmdet/retina/cann --device cpu --dump-info 

cke_11615.png

查看模型转换脚本:

atc --model=mmdeploy_models/mmdet/retina/cann/end2end.onnx --framework=5 --output=mmdeploy_models/mmdet/retina/cann/end2end --soc_version=Ascend310 --input_format=NCHW --input_shape=input:1,3,800,1344

cke_19844.png

转换成功,检查onnx和om的模型结果:

cke_30213.png

23、完成ResNet50和RetinaNet的模型推理作业

(1)ResNet50模型推理

resnet50_inference.py

import cv2
from mmdeploy_python import Classifier

# create a classifer
classifier = Classifier(model_path="mmdeploy_models/mmcls/resnet50/cann",device_name='npu',device_id=0)

#read an image
img = cv2.imread("tests/data/tiger.jpeg")

#person inference
result = classifier(img)

#show result
for label_id, score in result:
        print(label_id,score)
复制

python resnet50_inference.py

cke_33012.png

cke_34321.png

结果贴出来如下:

[2022-12-04 04:41:42.925] [mmdeploy] [info] [acl_net.cpp:65] ACL initialized.
[2022-12-04 04:41:43.468] [mmdeploy] [info] [acl_net.cpp:314] n_inputs = 1, dynamic_tensor_index_ = -1
[2022-12-04 04:41:43.476] [mmdeploy] [info] [acl_net.cpp:330] input [1, 3, 224, 224]
[2022-12-04 04:41:43.478] [mmdeploy] [info] [acl_net.cpp:369] Softmax_122:0:output [1, 1000]
[2022-12-04 04:41:43.496] [mmdeploy] [info] [inference.cpp:50] ["img"] <- ["img"]
[2022-12-04 04:41:43.496] [mmdeploy] [info] [inference.cpp:61] ["post_output"] -> ["cls"]
292 0.91845703125
282 0.07904052734375
281 0.00037169456481933594
290 0.00032806396484375
243 0.0001347064971923828
[2022-12-04 04:41:43.573] [mmdeploy] [info] [acl_net.cpp:83] ACL finalized.
复制

(6)RetinaNet模型推理

retina_inference.py

import cv2
from mmdeploy_python import Detector

#create a detector
detector = Detector(
        model_path = 'mmdeploy_models/mmdet/retina/cann',
        device_name='npu',
        device_id=0)

#read an image
img = cv2.imread('demo/resources/det.jpg')
#perform inference
bboxes, labels, _ = detector(img)

#visualize result
for index, (bbox, label_id) in enumerate(zip(bboxes,labels)):
        [left, top, right, bottom],score = bbox[0:4].astype(int),bbox[4]
        if score < 0.3:
                continue
        cv2.rectangle(img, (left,top),(right,bottom),(0,255,0))

cv2.imwrite('retinanet_output_detection.png',img)

python retina_inference.py

cke_41284.png

cke_41727.png

查看结果图片retinanet_output_detection.png已生成:

cke_43959.png

将其传到windows上打开看看:

cke_47964.png

结果跟faster rcnn的结果也是类似的。

(全文完,谢谢阅读)

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。