7-Merge--数据分析
【摘要】
Meger合并多个表格中相同字段的数据
In [1]:
...
In [1]:
import pandas as pd
In [2]:
left = pd.DataFrame({'key':['k0','k1','k2','k3'],
'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key':['k0','k1','k2','k3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']})
In [3]:
left
Out[3]:
In [4]:
right
Out[4]:
In [5]:
pd.merge(left,right)
Out[5]:
In [6]:
pd.merge(left,right,on='key')
Out[6]:
In [7]:
left = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k2','k3'],
'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k2','k3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']})
In [8]:
left
Out[8]:
In [9]:
right
Out[9]:
In [10]:
pd.merge(left,right,on='key1')
Out[10]:
In [11]:
pd.merge(left,right,on=['key1','key2'])
Out[11]:
In [16]:
left = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k2','k4'],
'A':['A0','A1','A2','A3'],
'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key1':['k0','k1','k2','k3'],
'key2':['k0','k1','k2','k3'],
'C':['C0','C1','C2','C3'],
'D':['D0','D1','D2','D3']})
In [17]:
left
Out[17]:
In [18]:
right
Out[18]:
* 指定多个字段合并,字段值一样的保留下来,不一样的值去掉。不显示。默认采用的是交集方式
In [19]:
pd.merge(left,right,on=['key1','key2'])
Out[19]:
- 指定多个字段合并,字段值一样的保留下来,不一样的值去掉。如果想让不一样的值显示,可以改为并集方式显示
In [20]:
pd.merge(left,right,on=['key1','key2'],how='outer')
Out[20]:
In [21]:
pd.merge(left,right,on=['key1','key2'],how='outer',indicator=True)
Out[21]:
In [23]:
pd.merge(left,right,on=['key1','key2'],how='left')
Out[23]:
In [25]:
pd.merge(left,right,on=['key1','key2'],how='right')
Out[25]:
In [ ]:
文章来源: brucelong.blog.csdn.net,作者:Bruce小鬼,版权归原作者所有,如需转载,请联系作者。
原文链接:brucelong.blog.csdn.net/article/details/80739959
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)