Pytorch实现EfficientNet

举报
AI浩 发表于 2021/12/22 23:01:43 2021/12/22
【摘要】 # !/usr/bin/env python # -- coding: utf-8 -- import math import torch import torch.nn as nn class S...
# !/usr/bin/env python
# -- coding: utf-8 --

import math
import torch
import torch.nn as nn


class Swish(nn.Module):
    def forward(self, x):
        return x * torch.sigmoid(x)


def ConvBNAct(in_channels,out_channels,kernel_size=3, stride=1,groups=1):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=groups),
            nn.BatchNorm2d(out_channels),
            Swish()
        )


def Conv1x1BNAct(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels),
            Swish()
        )

def Conv1x1BN(in_channels,out_channels):
    return nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
            nn.BatchNorm2d(out_channels)
        )

def Conv1(in_planes, places, stride=2):
    return nn.Sequential(
        nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False),
        nn.BatchNorm2d(places),
        Swish(),
        nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    )

class Flatten(nn.Module):
    def forward(self, x):
        return x.view(x.shape[0], -1)


class SEBlock(nn.Module):
    def __init__(self, channels, ratio=16):
        super().__init__()
        mid_channels = channels // ratio
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=True),
            Swish(),
            nn.Conv2d(mid_channels, channels, kernel_size=1, stride=1, padding=0, bias=True),
        )

    def forward(self, x):
        return x * torch.sigmoid(self.se(x))


class MBConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, expansion_factor=6):
        super(MBConvBlock, self).__init__()
        self.stride = stride
        self.expansion_factor = expansion_factor
        mid_channels = (in_channels * expansion_factor)

        self.bottleneck = nn.Sequential(
            Conv1x1BNAct(in_channels, mid_channels),
            ConvBNAct(mid_channels, mid_channels, kernel_size, stride, groups=mid_channels),
            SEBlock(mid_channels),
            Conv1x1BN(mid_channels, out_channels)
        )

        if self.stride == 1:
            self.shortcut = Conv1x1BN(in_channels, out_channels)

    def forward(self, x):
        out = self.bottleneck(x)
        out = (out + self.shortcut(x)) if self.stride==1 else out
        return out


class EfficientNet(nn.Module):
    params = {
        'efficientnet_b0': (1.0, 1.0, 224, 0.2),
        'efficientnet_b1': (1.0, 1.1, 240, 0.2),
        'efficientnet_b2': (1.1, 1.2, 260, 0.3),
        'efficientnet_b3': (1.2, 1.4, 300, 0.3),
        'efficientnet_b4': (1.4, 1.8, 380, 0.4),
        'efficientnet_b5': (1.6, 2.2, 456, 0.4),
        'efficientnet_b6': (1.8, 2.6, 528, 0.5),
        'efficientnet_b7': (2.0, 3.1, 600, 0.5),
    }
    def __init__(self, subtype='efficientnet_b0', num_classes=1000):
        super(EfficientNet, self).__init__()
        self.width_coeff = self.params[subtype][0]
        self.depth_coeff = self.params[subtype][1]
        self.dropout_rate = self.params[subtype][3]
        self.depth_div = 8

        self.stage1 = ConvBNAct(3, self._calculate_width(32), kernel_size=3, stride=2)
        self.stage2 = self.make_layer(self._calculate_width(32), self._calculate_width(16), kernel_size=3, stride=1, block=self._calculate_depth(1))
        self.stage3 = self.make_layer(self._calculate_width(16), self._calculate_width(24), kernel_size=3, stride=2, block=self._calculate_depth(2))
        self.stage4 = self.make_layer(self._calculate_width(24), self._calculate_width(40), kernel_size=5, stride=2, block=self._calculate_depth(2))
        self.stage5 = self.make_layer(self._calculate_width(40), self._calculate_width(80), kernel_size=3, stride=2, block=self._calculate_depth(3))
        self.stage6 = self.make_layer(self._calculate_width(80), self._calculate_width(112), kernel_size=5, stride=1, block=self._calculate_depth(3))
        self.stage7 = self.make_layer(self._calculate_width(112), self._calculate_width(192), kernel_size=5, stride=2, block=self._calculate_depth(4))
        self.stage8 = self.make_layer(self._calculate_width(192), self._calculate_width(320), kernel_size=3, stride=1, block=self._calculate_depth(1))

        self.classifier = nn.Sequential(
            Conv1x1BNAct(320, 1280),
            nn.AdaptiveAvgPool2d(1),
            nn.Dropout2d(0.2),
            Flatten(),
            nn.Linear(1280, num_classes)
        )

        self.init_weights()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
            elif isinstance(m, nn.Linear):
                init_range = 1.0 / math.sqrt(m.weight.shape[1])
                nn.init.uniform_(m.weight, -init_range, init_range)

    def _calculate_width(self, x):
        x *= self.width_coeff
        new_x = max(self.depth_div, int(x + self.depth_div / 2) // self.depth_div * self.depth_div)
        if new_x < 0.9 * x:
            new_x += self.depth_div
        return int(new_x)

    def _calculate_depth(self, x):
        return int(math.ceil(x * self.depth_coeff))

    def make_layer(self, in_places, places, kernel_size, stride, block):
        layers = []
        layers.append(MBConvBlock(in_places, places, kernel_size, stride))
        for i in range(1, block):
            layers.append(MBConvBlock(places, places, kernel_size))
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.stage1(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.stage5(x)
        x = self.stage6(x)
        x = self.stage7(x)
        x = self.stage8(x)
        out = self.classifier(x)
        return out

if __name__=='__main__':
    model = EfficientNet('efficientnet_b0')
    print(model)

    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166

文章来源: wanghao.blog.csdn.net,作者:AI浩,版权归原作者所有,如需转载,请联系作者。

原文链接:wanghao.blog.csdn.net/article/details/121573903

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。