(精华)2020年8月28日 数据结构与算法解析(归并排序)

举报
愚公搬代码 发表于 2021/10/18 23:17:51 2021/10/18
【摘要】 1、归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的...

1、归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

1.1 算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

1.2 动图演示

在这里插入图片描述

1.3 代码实现

/// <summary>
/// 归并排序
/// </summary>
public class Program {

    public static void Main(string[] args) {
        int[] array = { 43, 69, 11, 72, 28, 21, 56, 80, 48, 94, 32, 8 };

        MergeSort(array, 0, array.Length - 1);
        ShowSord(array);

        Console.ReadKey();
    }

    private static void ShowSord(int[] array) {
        foreach (var num in array) {
            Console.Write($"{num} ");
        }
        Console.WriteLine();
    }

    public static void MergeSort(int[] array, int low, int high) {
        if (low < high) {
            int mid = (low + high) / 2;
            MergeSort(array, low, mid);
            MergeSort(array, mid + 1, high);
            Merge(array, low, mid, high);
        }
    }

    private static void Merge(int[] array, int low, int mid, int high) {
        int[] mergeArr = new int[high - low + 1];
        int left = low;
        int right = mid + 1;
        int merge = 0;
        while (left <= mid && right <= high) {
            if (array[left] <= array[right]) {
                mergeArr[merge++] = array[left++];
            }
            else {
                mergeArr[merge++] = array[right++];
            }
        }
        while (left <= mid) {
            mergeArr[merge++] = array[left++];
        }
        while (right <= high) {
            mergeArr[merge++] = array[right++];
        }
        merge = 0;
        while (low <= high) {
            array[low++] = mergeArr[merge++];
        }
    }

}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

1.4 算法分析

归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。

文章来源: codeboy.blog.csdn.net,作者:愚公搬代码,版权归原作者所有,如需转载,请联系作者。

原文链接:codeboy.blog.csdn.net/article/details/108203735

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。