C++--剪绳子
【摘要】 剪绳子
题目
给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
要求 输入:8 输出:18
代码
#include&l...
剪绳子
题目
给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],…,k[m]。请问k[0]xk[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
要求
输入:8
输出:18
代码
#include<iostream>
#include<math.h>
using namespace std;
int max(int n)
{
if(n==2) return 1;
if(n==3) return 2;
int x=n%3;
int y=n/3;
if(x==0) return pow(3,y); else if(x==1) return 2*2*pow(3,y-1);
else return 2*pow(3,y);
}
int main()
{
cout<<max(8)<<endl;
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
大佬的源代码及解释
#include <iostream>
#include <cmath>
using namespace std;
/**
* 题目分析:
* 先举几个例子,可以看出规律来。
* 4 : 2*2
* 5 : 2*3
* 6 : 3*3
* 7 : 2*2*3 或者4*3
* 8 : 2*3*3
* 9 : 3*3*3
* 10:2*2*3*3 或者4*3*3
* 11:2*3*3*3
* 12:3*3*3*3
* 13:2*2*3*3*3 或者4*3*3*3
*
* 下面是分析:
* 首先判断k[0]到k[m]可能有哪些数字,实际上只可能是2或者3。
* 当然也可能有4,但是4=2*2,我们就简单些不考虑了。
* 5<2*3,6<3*3,比6更大的数字我们就更不用考虑了,肯定要继续分。
* 其次看2和3的数量,2的数量肯定小于3个,为什么呢?因为2*2*2<3*3,那么题目就简单了。
* 直接用n除以3,根据得到的余数判断是一个2还是两个2还是没有2就行了。
* 由于题目规定m>1,所以2只能是1*1,3只能是2*1,这两个特殊情况直接返回就行了。
*
* 乘方运算的复杂度为:O(log n),用动态规划来做会耗时比较多。
*/
long long n_max_3(long long n) { if (n == 2) { return 1; } if (n == 3) { return 2; } long long x = n % 3; long long y = n / 3; if (x == 0) { return pow(3, y); } else if (x == 1) { return 2 * 2 * (long long) pow(3, y - 1); } else { return 2 * (long long) pow(3, y); }
}
//给你一根长度为n的绳子,请把绳子剪成m段(m、n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m]。请问k[0]xk[1]x...xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
//
//输入描述:
//输入一个数n,意义见题面。(2 <= n <= 100)
//
//
//输出描述:
//输出答案。
//示例1
//输入
//8
//输出
//18
int main() { long long n = 0; cin >> n; cout << n_max_3(n) << endl; return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
文章来源: haihong.blog.csdn.net,作者:海轰Pro,版权归原作者所有,如需转载,请联系作者。
原文链接:haihong.blog.csdn.net/article/details/102632533
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)