基于三阶贝塞尔曲线的数据平滑算法

举报
天元浪子 发表于 2021/07/27 01:04:00 2021/07/27
【摘要】 文章目录 前言贝塞尔曲线算法描述算法实现参考资料 前言 很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。 一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后...

前言

很多文章在谈及曲线平滑的时候,习惯使用拟合的概念,我认为这是不恰当的。平滑后的曲线,一定经过原始的数据点,而拟合曲线,则不一定要经过原始数据点。

一般而言,需要平滑的数据分为两种:时间序列的单值数据、时间序列的二维数据。对于前者,并非一定要用贝塞尔算法,仅用样条插值就可以轻松实现平滑;而对于后者,不管是 numpy 还是 scipy 提供的那些插值算法,就都不适用了。

本文基于三阶贝塞尔曲线,实现了时间序列的单值数据和时间序列的二维数据的平滑算法,可满足大多数的平滑需求。

贝塞尔曲线

关于贝塞尔曲线的数学原理,这里就不讨论了,直接贴出结论:

  • 一阶贝塞尔曲线
    一阶贝塞尔曲线
    在这里插入图片描述

  • 二阶贝塞尔曲线
    二阶贝塞尔曲线
    在这里插入图片描述

  • 三阶贝塞尔曲线
    三阶贝塞尔曲线
    在这里插入图片描述

算法描述

如果我们把三阶贝塞尔曲线的 P0 和 P3 视为原始数据,只要找到 P1 和 P2 两个点(我们称其为控制点),就可以根据三阶贝塞尔曲线公式,计算出 P0 和 P3 之间平滑曲线上的任意点。
在这里插入图片描述

现在,平滑问题变成了如何计算两个原始数据点之间的控制点的问题。步骤如下:

第1步:绿色直线连接相邻的原始数据点,计算出个线段的中点,红色直线连接相邻的中点
在这里插入图片描述

第2步:根据相邻两条绿色直线长度之比,分割其中点之间红色连线,标记分割点
在这里插入图片描述

第3步:平移红色连线,使其分割点与相对的原始数据点重合
在这里插入图片描述

第4步:调整平移后红色连线的端点与原始数据点的距离,通常缩减40%-80%
在这里插入图片描述

算法实现

# -*- coding: utf-8 -*-

import numpy as np

def bezier_curve(p0, p1, p2, p3, inserted): """ 三阶贝塞尔曲线 p0, p1, p2, p3  - 点坐标,tuple、list或numpy.ndarray类型 inserted - p0和p3之间插值的数量 """ assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型' assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型' assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型' assert isinstance(p0, (tuple, list, np.ndarray)), u'点坐标不是期望的元组、列表或numpy数组类型' if isinstance(p0, (tuple, list)): p0 = np.array(p0) if isinstance(p1, (tuple, list)): p1 = np.array(p1) if isinstance(p2, (tuple, list)): p2 = np.array(p2) if isinstance(p3, (tuple, list)): p3 = np.array(p3) points = list() for t in np.linspace(0, 1, inserted+2): points.append(p0*np.power((1-t),3) + 3*p1*t*np.power((1-t),2) + 3*p2*(1-t)*np.power(t,2) + p3*np.power(t,3)) return np.vstack(points)


def smoothing_base_bezier(date_x, date_y, k=0.5, inserted=10, closed=False): """ 基于三阶贝塞尔曲线的数据平滑算法 date_x - x维度数据集,list或numpy.ndarray类型 date_y - y维度数据集,list或numpy.ndarray类型 k - 调整平滑曲线形状的因子,取值一般在0.2~0.6之间。默认值为0.5 inserted - 两个原始数据点之间插值的数量。默认值为10 closed - 曲线是否封闭,如是,则首尾相连。默认曲线不封闭 """ assert isinstance(date_x, (list, np.ndarray)), u'x数据集不是期望的列表或numpy数组类型' assert isinstance(date_y, (list, np.ndarray)), u'y数据集不是期望的列表或numpy数组类型' if isinstance(date_x, list) and isinstance(date_y, list): assert len(date_x)==len(date_y), u'x数据集和y数据集长度不匹配' date_x = np.array(date_x) date_y = np.array(date_y) elif isinstance(date_x, np.ndarray) and isinstance(date_y, np.ndarray): assert date_x.shape==date_y.shape, u'x数据集和y数据集长度不匹配' else: raise Exception(u'x数据集或y数据集类型错误') # 第1步:生成原始数据折线中点集 mid_points = list() for i in range(1, date_x.shape[0]): mid_points.append({ 'start': (date_x[i-1], date_y[i-1]), 'end': (date_x[i], date_y[i]), 'mid': ((date_x[i]+date_x[i-1])/2.0, (date_y[i]+date_y[i-1])/2.0) }) if closed: mid_points.append({ 'start': (date_x[-1], date_y[-1]), 'end': (date_x[0], date_y[0]), 'mid': ((date_x[0]+date_x[-1])/2.0, (date_y[0]+date_y[-1])/2.0) }) # 第2步:找出中点连线及其分割点 split_points = list() for i in range(len(mid_points)): if i < (len(mid_points)-1): j = i+1 elif closed: j = 0 else: continue x00, y00 = mid_points[i]['start'] x01, y01 = mid_points[i]['end'] x10, y10 = mid_points[j]['start'] x11, y11 = mid_points[j]['end'] d0 = np.sqrt(np.power((x00-x01), 2) + np.power((y00-y01), 2)) d1 = np.sqrt(np.power((x10-x11), 2) + np.power((y10-y11), 2)) k_split = 1.0*d0/(d0+d1) mx0, my0 = mid_points[i]['mid'] mx1, my1 = mid_points[j]['mid'] split_points.append({ 'start': (mx0, my0), 'end': (mx1, my1), 'split': (mx0+(mx1-mx0)*k_split, my0+(my1-my0)*k_split) }) # 第3步:平移中点连线,调整端点,生成控制点 crt_points = list() for i in range(len(split_points)): vx, vy = mid_points[i]['end'] # 当前顶点的坐标 dx = vx - split_points[i]['split'][0] # 平移线段x偏移量 dy = vy - split_points[i]['split'][1] # 平移线段y偏移量 sx, sy = split_points[i]['start'][0]+dx, split_points[i]['start'][1]+dy # 平移后线段起点坐标 ex, ey = split_points[i]['end'][0]+dx, split_points[i]['end'][1]+dy # 平移后线段终点坐标 cp0 = sx+(vx-sx)*k, sy+(vy-sy)*k # 控制点坐标 cp1 = ex+(vx-ex)*k, ey+(vy-ey)*k # 控制点坐标 if crt_points: crt_points[-1].insert(2, cp0) else: crt_points.append([mid_points[0]['start'], cp0, mid_points[0]['end']]) if closed: if i < (len(mid_points)-1): crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']]) else: crt_points[0].insert(1, cp1) else: if i < (len(mid_points)-2): crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end']]) else: crt_points.append([mid_points[i+1]['start'], cp1, mid_points[i+1]['end'], mid_points[i+1]['end']]) crt_points[0].insert(1, mid_points[0]['start']) # 第4步:应用贝塞尔曲线方程插值 out = list() for item in crt_points: group = bezier_curve(item[0], item[1], item[2], item[3], inserted) out.append(group[:-1]) out.append(group[-1:]) out = np.vstack(out) return out.T[0], out.T[1]


if __name__ == '__main__': import matplotlib.pyplot as plt x = np.array([2,4,4,3,2]) y = np.array([2,2,4,3,4]) plt.plot(x, y, 'ro') x_curve, y_curve = smoothing_base_bezier(x, y, k=0.3, closed=True) plt.plot(x_curve, y_curve, label='$k=0.3$') x_curve, y_curve = smoothing_base_bezier(x, y, k=0.4, closed=True) plt.plot(x_curve, y_curve, label='$k=0.4$') x_curve, y_curve = smoothing_base_bezier(x, y, k=0.5, closed=True) plt.plot(x_curve, y_curve, label='$k=0.5$') x_curve, y_curve = smoothing_base_bezier(x, y, k=0.6, closed=True) plt.plot(x_curve, y_curve, label='$k=0.6$') plt.legend(loc='best') plt.show()

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159

下图为平滑效果。左侧是封闭曲线,两个原始数据点之间插值数量为默认值10;右侧为同样数据不封闭的效果,k值默认0.5.

在这里插入图片描述

参考资料

算法参考了 Interpolation with Bezier Curves 这个网页,里面没有关于作者的任何信息,在此只能笼统地向国际友人表示感谢!

文章来源: xufive.blog.csdn.net,作者:天元浪子,版权归原作者所有,如需转载,请联系作者。

原文链接:xufive.blog.csdn.net/article/details/86163741

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。