ELI5 和scikit-learn文本分类管道

举报
毛利 发表于 2021/07/15 08:09:07 2021/07/15
【摘要】 ELI5主要是用于处理文本分类的机器学习的库 MLI5是一个Python库,允许使用统一API可视化地调试各种机器学习模型。 它内置了对多个ML框架的支持,并提供了一种解释黑盒模型的方法。它有助于调试机器学习分类器并解释它们的预测。 scikit-learn。目前,ELI5允许解释scikit-learning线性分类器和回归量的权重和预测,将决策树打印为文本或...

ELI5主要是用于处理文本分类的机器学习的库

MLI5是一个Python库,允许使用统一API可视化地调试各种机器学习模型。 它内置了对多个ML框架的支持,并提供了一种解释黑盒模型的方法。它有助于调试机器学习分类器并解释它们的预测。

  • scikit-learn。目前,ELI5允许解释scikit-learning线性分类器和回归量的权重和预测,将决策树打印为文本或SVG,显示特征重要性并解释决策树和基于树的集合的预测。

支持Pipeline和FeatureUnion。

ELI5通过scikit-learn了解文本处理实用程序,并可相应地突出显示文本数据。它还允许通过撤消散列来调试包含HashingVectorizer的scikit-learn管道。

  • XGBoost - 显示功能重要性并解释XGBClassifier,XGBRegressor和xgboost.Booster的预测。

  • LightGBM - 显示功能重要性并解释LGBMClassifier和LGBMRegressor的预测。

  • sklearn-crfsuite。ELI5允许检查sklearn_crfsuite.CRF模型的权重。

https://eli5.readthedocs.io/en/latest/tutorials/sklearn-text.html

https://eli5.readthedocs.io/en/latest/libraries/sklearn.html

文章来源: maoli.blog.csdn.net,作者:刘润森!,版权归原作者所有,如需转载,请联系作者。

原文链接:maoli.blog.csdn.net/article/details/89839772

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。