DeepChem | 基于图卷积预测分子的溶解度
【摘要】 如何使用DeepChem库将图卷积用于类似问题的回归分析。
from deepchem.models.tensorgraph.layers import GraphPool, GraphGatherfrom deepchem.models.tensorgraph.layers import Dense, L2Loss, WeightedError, Stackfrom ...
如何使用DeepChem库将图卷积用于类似问题的回归分析。
-
from deepchem.models.tensorgraph.layers import GraphPool, GraphGather
-
from deepchem.models.tensorgraph.layers import Dense, L2Loss, WeightedError, Stack
-
from deepchem.models.tensorgraph.layers import Label, Weights
-
import numpy as np
-
import tensorflow as tf
-
import os
-
num_epochs = 50
-
batch_size = 200
-
pad_batches = True
-
-
tg = TensorGraph(batch_size=batch_size,learning_rate=0.0005,use_queue=False)
-
prediction_tasks = ['cLogP','cLogS']
-
-
def read_data(input_file_path):
-
featurizer = dc.feat.ConvMolFeaturizer()
-
loader = dc.data.CSVLoader(tasks=prediction_tasks, smiles_field="Smiles", featurizer=featurizer)
-
dataset = loader.featurize(input_file_path, shard_size=8192)
-
# Initialize transformers
-
transformer = dc.trans.NormalizationTransformer(transform_w&
文章来源: drugai.blog.csdn.net,作者:DrugAI,版权归原作者所有,如需转载,请联系作者。
原文链接:drugai.blog.csdn.net/article/details/106069191
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)