OHEM算法

举报
风吹稻花香 发表于 2021/06/06 00:16:17 2021/06/06
【摘要】   CVPR2016的文章,CMU与rbg大神的合作。原谅我一直没有对这篇文章做一个笔记~~ 文章提出了一种通过online hard example mining(OHEM)算法训练基于区域的卷积检测算子的高效目标检测算法,能够对简单样本和一些小数量样本进行抑制,使得训练过程更加高效。该方法利用显著的bootstrapping技术(SVM中被普遍利用),对SG...

 

CVPR2016的文章,CMU与rbg大神的合作。原谅我一直没有对这篇文章做一个笔记~~

文章提出了一种通过online hard example mining(OHEM)算法训练基于区域的卷积检测算子的高效目标检测算法,能够对简单样本和一些小数量样本进行抑制,使得训练过程更加高效。该方法利用显著的bootstrapping技术(SVM中被普遍利用),对SGD算法进行一定的修改,使得原有的region-based ConvNets的启发式学习和多参数可以被移除,并得到较准确稳定的检测结果。在PASCAL VOC2007和2012中的mAP分别为:78.9%,76.3%。https://github.com/abhi2610/ohem

 

OHEM(online hard example miniing)算法的核心思想是根据输入样本的损失进行筛选,筛选出hard example,表示对分类和检测影响较大的样本,然后将筛选得到的这些样本应用在随机梯度下降中训练

文章来源: blog.csdn.net,作者:网奇,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/jacke121/article/details/106367873

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。