python专栏基础部分(三)Pandas
import numpy as np
import pandas as pd
# 导入numpy、pandas模块
Series 数据结构
# Series 是带有标签的一维数组,可以保存任何数据类型(整数,字符串,浮点数,Python对象等),轴标签统称为索引
s = pd.Series(np.random.rand(5))
print(s)
print(type(s))
# 查看数据、数据类型
print(s.index,type(s.index))
print(s.values,type(s.values))
# .index查看series索引,类型为rangeindex
# .values查看series值,类型是ndarray
# 核心:series相比于ndarray,是一个自带索引index的数组 → 一维数组 + 对应索引
# 所以当只看series的值的时候,就是一个ndarray
# series和ndarray较相似,索引切片功能差别不大
# series和dict相比,series更像一个有顺序的字典(dict本身不存在顺序),其索引原理与字典相似(一个用key,一个用index)
# Series 创建方法一:由字典创建,字典的key就是index,values就是values
dic = {'a':1 ,'b':2 , 'c':3, '4':4, '5':5}
s = pd.Series(dic)
print(s)
# 注意:key肯定是字符串,假如values类型不止一个会怎么样? → dic = {'a':1 ,'b':'hello' , 'c':3, '4':4, '5':5}
# Series 创建方法二:由数组创建(一维数组)
arr = np.random.randn(5)
s = pd.Series(arr)
print(arr)
print(s)
# 默认index是从0开始,步长为1的数字
s = pd.Series(arr, index = ['a','b','c','d','e'],dtype = np.object)
print(s)
# index参数:设置index,长度保持一致
# dtype参数:设置数值类型
# name为Series的一个参数,创建一个数组的 名称
# .name方法:输出数组的名称,输出格式为str,如果没用定义输出名称,输出为None
s2 = pd.Series(np.random.randn(5),name = 'test')
s3 = s2.rename('hehehe')
print(s3)
print(s3.name, s2.name)
# .rename()重命名一个数组的名称,并且新指向一个数组,原数组不变
"二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值、字符串、布尔值等。Dataframe中的数据以一个或多个二维块存放,不是列表、字典或一维数组结构。
# Dataframe 数据结构
# Dataframe是一个表格型的数据结构,“带有标签的二维数组”。
# Dataframe带有index(行标签)和columns(列标签)
data = {'name':['Jack','Tom','Mary'],
'age':[18,19,20],
'gender':['m','m','w']}
frame = pd.DataFrame(data)
print(frame)
print(type(frame))
print(frame.index,'\n该数据类型为:',type(frame.index))
print(frame.columns,'\n该数据类型为:',type(frame.columns))
print(frame.values,'\n该数据类型为:',type(frame.values))
# 查看数据,数据类型为dataframe
# .index 查看行标签
# .columns 查看列标签
# .values 查看值,数据类型为ndarray
# 创建方法:pandas.Dataframe()
data1 = {'a':[1,2,3],
'b':[3,4,5],
'c':[5,6,7]}
data2 = {'one':np.random.rand(3),
'two':np.random.rand(3)} # 这里如果尝试 'two':np.random.rand(4) 会怎么样?
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由数组/list组成的字典 创建Dataframe,columns为字典key,index为默认数字标签
# 字典的值的长度必须保持一致!
# Dataframe 创建方法一:由数组/list组成的字典
# 创建方法:pandas.Dataframe()
df1 = pd.DataFrame(data1, columns = ['b','c','a','d'])
print(df1)
df1 = pd.DataFrame(data1, columns = ['b','c'])
print(df1)
# columns参数:可以重新指定列的顺序,格式为list,如果现有数据中没有该列(比如'd'),则产生NaN值
# 如果columns重新指定时候,列的数量可以少于原数据
df2 = pd.DataFrame(data2, index = ['f1','f2','f3']) # 这里如果尝试 index = ['f1','f2','f3','f4'] 会报错
print(df2)
# index参数:重新定义index,格式为list,长度必须保持一致
# Dataframe 创建方法二:由Series组成的字典
data1 = {'one':pd.Series(np.random.rand(2)),
'two':pd.Series(np.random.rand(3))} # 没有设置index的Series
data2 = {'one':pd.Series(np.random.rand(2), index = ['a','b']),
'two':pd.Series(np.random.rand(3),index = ['a','b','c'])} # 设置了index的Series
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由Seris组成的字典 创建Dataframe,columns为字典key,index为Series的标签(如果Series没有指定标签,则是默认数字标签)
# Series可以长度不一样,生成的Dataframe会出现NaN值
# Dataframe 创建方法三:通过二维数组直接创建
ar = np.random.rand(9).reshape(3,3)
print(ar)
df1 = pd.DataFrame(ar)
df2 = pd.DataFrame(ar, index = ['a', 'b', 'c'], columns = ['one','two','three']) # 可以尝试一下index或columns长度不等于已有数组的情况
print(df1)
print(df2)
# 通过二维数组直接创建Dataframe,得到一样形状的结果数据,如果不指定index和columns,两者均返回默认数字格式
# index和colunms指定长度与原数组保持一致
Series和Datafram索引的原理一样,我们以Dataframe的索引为主来学习
列索引:df['列名'] (Series不存在列索引)
行索引:df.loc[]、df.iloc[]
# 选择行与列
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,
index = ['one','two','three'],
columns = ['a','b','c','d'])
print(df)
data1 = df['a']
data2 = df[['a','c']]
print(data1,type(data1))
print(data2,type(data2))
print('-----')
# 按照列名选择列,只选择一列输出Series,选择多列输出Dataframe
data3 = df.loc['one']
data4 = df.loc[['one','two']]
print(data2,type(data3))
print(data3,type(data4))
# 按照index选择行,只选择一行输出Series,选择多行输出Dataframe
# df[] - 选择列
# 一般用于选择列,行索引用.loc与.iloc
df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,
index = ['one','two','three'],
columns = ['a','b','c','d'])
print(df)
print('-----')
data1 = df['a']
data2 = df[['b','c']] # 尝试输入 data2 = df[['b','c','e']]
print(data1)
print(data2)
# df[]默认选择列,[]中写列名(所以一般数据colunms都会单独制定,不会用默认数字列名,以免和index冲突)
# 单选列为Series,print结果为Series格式
# 多选列为Dataframe,print结果为Dataframe格式
# 核心笔记:df[col]一般用于选择列,[]中写列名
# df.loc[] - 按index选择行
# 核心笔记:df.loc[label]主要针对index选择行,同时支持指定index,及默认数字index
# df.iloc[] - 按照整数位置(从轴的0到length-1)选择行
# 类似list的索引,其顺序就是dataframe的整数位置,从0开始计
# 多重索引:比如同时索引行和列
# 先选择列再选择行 —— 相当于对于一个数据,先筛选字段,再选择数据量
df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = ['one','two','three','four'],
columns = ['a','b','c','d'])
print(df)
print('------')
print(df['a'].loc[['one','three']]) # 选择a列的one,three行
print(df[['b','c','d']].iloc[::2]) # 选择b,c,d列的one,three行
print(df[df['a'] < 50].iloc[:2]) # 选择满足判断索引的前两行数据
# 数据查看、转置
df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,columns = ['a','b'])
print(df.head(2))
print(df.tail())
# .head()查看头部数据
# .tail()查看尾部数据
# 默认查看5条
print(df.T)
# .T 转置
df['e'] = 10
df.loc[4] = 20
print(df)
# 新增列/行并赋值
df['e'] = 20
df[['a','c']] = 100
print(df)
# 索引后直接修改值
# del语句 - 删除列
# drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据
# drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据
# 对齐
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
print(df1 + df2)
# DataFrame对象之间的数据自动按照列和索引(行标签)对齐
# 排序1 - 按值排序 .sort_values
# 同样适用于Series
df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
columns = ['a','b','c','d'])
print(df1)
print(df1.sort_values(['a'], ascending = True)) # 升序
print(df1.sort_values(['a'], ascending = False)) # 降序
print('------')
# ascending参数:设置升序降序,默认升序
# 单列排序
df2 = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
'b':list(range(8)),
'c':list(range(8,0,-1))})
print(df2)
print(df2.sort_values(['a','c']))
# 多列排序,按列顺序排序
# 注意inplace参数
# 排序2 - 索引排序 .sort_index
df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = [5,4,3,2],
columns = ['a','b','c','d'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
index = ['h','s','x','g'],
columns = ['a','b','c','d'])
print(df1)
print(df1.sort_index())
print(df2)
print(df2.sort_index())
# 按照index排序
# 默认 ascending=True, inplace=False
# 基本参数:axis、skipna
# np.nan :空值
# .mean()计算均值 m2 = df.mean(axis=1) #按列汇总
# 只统计数字列
# 可以通过索引单独统计一列
# axis参数:默认为0,以列来计算,axis=1,以行来计算
m3 = df.mean(skipna=False) # skipna参数:是否忽略NaN,默认True,如False,有NaN的列统计结果仍未NaN
# 主要数学计算方法,可用于Series和DataFrame(1)
df = pd.DataFrame({'key1':np.arange(10),
'key2':np.random.rand(10)*10})
print(df)
print('-----')
print(df.count(),'→ count统计非Na值的数量\n')
print(df.min(),'→ min统计最小值\n',df['key2'].max(),'→ max统计最大值\n')
print(df.quantile(q=0.75),'→ quantile统计分位数,参数q确定位置\n')
print(df.sum(),'→ sum求和\n')
print(df.mean(),'→ mean求平均值\n')
print(df.median(),'→ median求算数中位数,50%分位数\n')
print(df.std(),'\n',df.var(),'→ std,var分别求标准差,方差\n')
print(df.skew(),'→ skew样本的偏度\n')
print(df.kurt(),'→ kurt样本的峰度\n')
# 唯一值:.unique()
s = pd.Series(list('asdvasdcfgg'))
sq = s.unique()
print(s)
print(sq,type(sq))
print(pd.Series(sq))
# 得到一个唯一值数组
# 通过pd.Series重新变成新的Series
sq.sort()
print(sq)
# 重新排序
# 值计数:.value_counts()
sc = s.value_counts(sort = False) # 也可以这样写:pd.value_counts(sc, sort = False)
print(sc)
# 得到一个新的Series,计算出不同值出现的频率
# sort参数:排序,默认为True
# 成员资格:.isin()
s = pd.Series(np.arange(10,15))
df = pd.DataFrame({'key1':list('asdcbvasd'),
'key2':np.arange(4,13)})
print(s)
print(df)
print('-----')
print(s.isin([5,14]))
print(df.isin(['a','bc','10',8]))
# 用[]表示
# 得到一个布尔值的Series或者Dataframe
# 字符串常用方法 - split、rsplit
s = pd.Series(['a,b,c','1,2,3',['a,,,c'],np.nan])
print(s.str.split(','))
print('-----')
# 类似字符串的split
print(s.str.split(',')[0])
print('-----')
# 直接索引得到一个list
print(s.str.split(',').str[0])
print(s.str.split(',').str.get(1))
print('-----')
# 可以使用get或[]符号访问拆分列表中的元素
print(s.str.split(',', expand=True))
print(s.str.split(',', expand=True, n = 1))
print(s.str.rsplit(',', expand=True, n = 1))
print('-----')
# 可以使用expand可以轻松扩展此操作以返回DataFrame
# n参数限制分割数
# rsplit类似于split,反向工作,即从字符串的末尾到字符串的开头
df = pd.DataFrame({'key1':['a,b,c','1,2,3',[':,., ']],
'key2':['a-b-c','1-2-3',[':-.- ']]})
print(df['key2'].str.split('-'))
# Dataframe使用split
Pandas具有全功能的,高性能内存中连接操作,与SQL等关系数据库非常相似
# 参数how → 合并方式
print(pd.merge(df3, df4,on=['key1','key2'], how = 'inner'))
print('------')
# inner:默认,取交集
print(pd.merge(df3, df4, on=['key1','key2'], how = 'outer'))
print('------')
# outer:取并集,数据缺失范围NaN
print(pd.merge(df3, df4, on=['key1','key2'], how = 'left'))
print('------')
# left:按照df3为参考合并,数据缺失范围NaN
print(pd.merge(df3, df4, on=['key1','key2'], how = 'right'))
# right:按照df4为参考合并,数据缺失范围NaN
# 连接:concat
s1 = pd.Series([1,2,3])
s2 = pd.Series([2,3,4])
print(pd.concat([s1,s2]))
print('-----')
# 默认axis=0,行+行
s3 = pd.Series([1,2,3],index = ['a','c','h'])
s4 = pd.Series([2,3,4],index = ['b','e','d'])
print(pd.concat([s3,s4]).sort_index())
print(pd.concat([s3,s4], axis=1))
print('-----')
# axis=1,列+列,成为一个Dataframe
# 去重 .duplicated
s = pd.Series([1,1,1,1,2,2,2,3,4,5,5,5,5])
print(s.duplicated())
print(s[s.duplicated() == False])
print('-----')
# 判断是否重复
# 通过布尔判断,得到不重复的值
# drop.duplicates移除重复
# inplace参数:是否替换原值,默认False
# Dataframe中使用duplicated
# 替换 .replace
s = pd.Series(list('ascaazsd'))
print(s.replace('a', np.nan))
print(s.replace(['a','s'] ,np.nan))
print(s.replace({'a':'hello world!','s':123}))
# 可一次性替换一个值或多个值
# 可传入列表或字典
分组统计 - groupby功能
根据某些条件将数据拆分成组
对每个组独立应用函数
将结果合并到一个数据结构中
Dataframe在行(axis=0)或列(axis=1)上进行分组,将一个函数应用到各个分组并产生一个新值,然后函数执行结果被合并到最终的结果对象中。
df.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
# 读取普通分隔数据:read_table
# 可以读取txt,csv
import os
os.chdir('C:/Users/iHJX_Alienware/Desktop/')
data1 = pd.read_table('data1.txt', delimiter=',',header = 0, index_col=1)
print(data1)
# delimiter:用于拆分的字符,也可以用sep:sep = ','
# header:用做列名的序号,默认为0(第一行)
# index_col:指定某列为行索引,否则自动索引0, 1, .....
# read_table主要用于读取简单的数据,txt/csv
# 读取csv数据:read_csv
data2 = pd.read_csv('data2.csv',encoding = 'utf-8')
print(data2.head())
# 大多数情况先将excel导出csv,再读取
# 读取excel数据:read_excel
data3 = pd.read_excel('xxx文件名.xlsx',sheet_name='xxx列表名',header=0)
print(data3.head())
# io :文件路径。
# sheetname:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 → ① int/string 返回的是dataframe ②而none和list返回的是dict
# header:指定列名行,默认0,即取第一行
# index_col:指定列为索引列,也可以使用u”strings”
- 点赞
- 收藏
- 关注作者
评论(0)